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SYMBOLS AND ABBREVIATIONS

Streamwise distance from attachment line along wing surface, ft
Wing reference area, ft2

Suction panel reference area, fi2

Velocity component normal to the leading edge, ft/s
Equivalent suction inflow velocity (uniformly distributed ), ft/s
Velocity component parallel to free stream, ft/s

Suction weight flow, 1b/s
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Reynolds number
Tollmien-Schlichting
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University of Washington Aeronautical Laboratory

Wing buttock line



1.0 SUMMARY

The aerodynamic design of an experimental hybrid laminar flow control (HLFC) wing panel on a
Boeing 757 airplane has been developed. The modified wing is intended both to provide a facility
for flight research on high Reynolds number HLFC and to demonstrate practical HLFC operation on
a full-scale commercial transport airplane. The 17-ft-long test panel provides a flow-controlled span
of nearly 14 ft, beginning just outboard of the left engine nacelle.

The aerodynamic design comprises—

a.  Arevised wing contour designed to produce a pressure distribution favorable to laminar
flow. :

b. Definition of suction flow requirements to laminarize the boundary layer and predict
the extent of laminar flow achievable in the test area.

c.  Design of provisions at the leading edge of the inboard end of the test panel to prevent
attachment-line boundary layer transition.

d. Geometric design and experimental verification of the effectiveness of a Krueger
leading edge flap that serves both as a high-lift device equivalent to the original 757
leading edge slat and as a shield to prevent insect impingement on the laminar flow
surface.

The development of the revised wing contour was carried out using an enhanced version of
Jameson’s transonic inviscid flow code (ref. 1) in conjunction with a Boeing-developed three-
dimensional boundary layer analysis code (ref. 2). No high-speed wind tunnel testing was done in
support of this effort. The selected design point was M = 0.80 and Cr. = 0.50 at 39,000-ft altitude,
which is the same as the recommended long-range cruise condition of the Boeing 757 airplane. The
HLFC wing profile modification was limited to the portion ahead of the front spar. A slightly blunter
leading edge was used, providing more rapid initial acceleration than the original 757 wing. Aftof
the front spar, the desired gently favorable pressure gradient and aft pressure recovery were already
present. The lower surface of the leading edge formed the upper contour of the Krueger flap when
it was deployed. To increase the Krueger’s effectiveness as a leading edge device, the very flat 757
contour was replaced by a slightly bulged form.

The suction flow rates were determined using the Unified Stability System (USS) computer code
developed by Boeing under NASA sponsorship (ref. 3). The USS code calculates disturbance
amplification ratios for crossflow (CF) and Tollmien-Schlichting (TS) instabilities, including the
effects of suction, in three-dimensional compressible flow according to Mack’s stability code
(ref. 4). The transition criterion used in the present study was a curve on a plot of TS versus CF
amplification ratios based on data from flight experiments on the F-111 and Boeing 757 natural
laminar flow “gloves” (refs. 5 and 6). It showed high sensitivity to crossflow instability, resulting
in a requirement for high suction rates near the leading edge.

The stability and suction requirementcalculations were carried out over a range of lift coefficientand
Mach number surrounding the design point. The calculations indicated that laminar flow could
usually be sustained back to the pressure recovery point (or shock location), normally around 45%
to 50% of chord. However, the predicted laminar run was less than 45% chord over the inboard



portion of the HLFC test panel, because of early pressure recovery. At lower Cis, (around 0.40),
more suction was required and less laminar flow predicted than at high lift coefficients (around 0.60)
because of changes in the pressure distributions. The calculations also indicated that, because of
decreasing Reynolds number, a greater extent of laminar flow could be expected as altitude
increased, and less suction flow would be required to attain it.

The predicted total suction flow coefficient (Cq) at the design condition (M =0.80 and C1. =0.50
at 39,000 ft altitude) was 4.72 x 10°5 and the corresponding total volume and mass flow rates were
6.97 £3/s and 0.1368 1b/s (8.2 Ib/min), respectively.

After the suction requirements had been defined and the suction system had been designed to meet
them, additional data became available from flight experiments on the variable-sweep F-14 VSTFE
airplane (ref. 3), indicating that somewhat higher crossflow amplification would be acceptable, so
lower suction rates near the leading edge would be adequate. However, it was notconsidered prudent
to redesign the system for a lower suction capability at that point, and it was decided to regard the
USS code’s prediction as a conservative upper boundary. The suction system controls would permit
inflight verification of the lower suction requirements.

The attachment-line boundary layer momentum thickness Reynolds number was expected to be at
or near the critical value of 100 along most of the span affected by HLFC, so it was considered
advisable to take steps to reduce it. A suction “patch” was therefore provided at the leading edge just
inboard of the HLFC test area, vented to a low-pressure point further downstream on the lower
surface. The passive suction provided was estimated to have reduced the attachment-line Reynolds

number to about 30.

A low-speed wind tunnel test of a Boeing 757 model with modified leading edge devices showed that
the maximum lift capability was only slightly compromised by replacing two of the five slats with
dual-purpose Krueger flaps, and the test also showed that the HLFC leading edge modification would
not significantly alter the low-speed performance and handling qualities of the test airplane.



2.0 INTRODUCTION
2.1 BACKGROUND

The potential for reducing wing friction drag by increasing the extent of laminar flow was recognized
more than half a century ago. However, boundary layer instabilities associated with high Reynolds
number and with sweepback prevented achievement of significant laminar runs on the wings of large
high-performance airplanes. In the 1960s, the USAF X-21 program (ref. 7) showed that those
problems could be overcome by using slot suction to stabilize the boundary layer, provided that care
was taken to control wing surface roughness and waviness. The program failed as a demonstration
of practical laminar flow control because of a flawed joint design that required continual repair or
replacement of aerodynamic smoothing material. There was also debate as to whether the
complexity of a suction system that covered the entire wing with slots and subsurface ducts was

justified by the performance gain.

The concept of Hybrid Laminar Flow Control (HLFC), invented by L. B. Gratzer of The Boeing
Company (U.S. Patent No. 4,575,030), greatly simplifies laminar flow control by confining suction
surfaces and pneumatic system components to the leading edge. HLFC maintains laminar flow
downstream of the wing front spar solely by tailoring the pressure distribution.

Other concerns relating to anti-icing and to clogging or roughening of suction surfaces as a result of
insect accretion were addressed by the NASA Leading Edge Flight Test Program (refs. 8, 9, and 10).
A modified Lockheed Jetstar airplane equipped with a partial-span leading edge suction system was
flown in a variety of hostile environments and demonstrated reliable operation of the system.

The present program was sponsored by NASA, with partial USAF sponsorship and Boeing
participation, in order to—

a.  Perform high Reynolds number flight research on HLFC.

b. Obtain data on the effectiveness of HLFC on a large, high-subsonic-speed transport
airplane.

c. Develop and demonstrate practical design concepts for HLFC systems.

2.2 TECHNICAL APPROACH

A Boeing-owned 757 airplane was modified to include all the critical systems for a full-scale HLFC
application, plus flight-operable suction controls and extensive instrumentation to meet HLFC
researchrequirements. The 757 wasideally suited for the program because its advanced aerodynamic
technology wing permitted attainment of the needed HLFC pressure distribution with only a small
contour change ahead of the front spar, and the smoothness of the existing between-spar structure
allowed the test to be conducted with minimal fairing or coating beyond normal paint. This ensured
that the data obtained would have practical application to standard production wings, and not be
restricted to ideally smooth surfaces.



2.3 PROGRAM TASKS
The program effort consisted of—

Aerodynamic Design. Definition of the surface pressures and suction quantities required to achieve
extended laminar flow, followed by geometric design of the wing contours needed to obtain the
surface pressures. This task is treated in detail in this volume.

Leading Edge Structural Design and Fabrication. The design, construction, and installation of
a 22-ft section of wing leading edge, having provisions for suction through a porous outer skin and
for a Krueger-type leading edge flap serving both as an integral part of the airplane high-lift system
and as a shield against insect accretion at low altitude. The leading edge was required to meet
stringent aerodynamic smoothness and waviness requirements under load, as well as to provide
structural integrity. This task is treated in detail in volume IIL

Suction System Design and Manufacture. The design of the system of air passages, ducts, valves,
and pump, and the specification of leading edge outer skin porosities. The system was required not
only to provide the suction flows required for laminarization, but also to demonstrate anti-icing
capability. To achieve this, hot pressurized air was required to flow out through certain portions of
the porous skin. The system wasalso required to provide for a wide range of suction flow adjustment,
so as to permit optimization of HLFC suction quantities and to permit generation of boundary layer
behavior data under a variety of suction conditions, in support of research on boundary layer analysis

methods. This task is reported in detail in volume IV.

Flight Test and Data Analysis. The definition and installation of suitable instrumentation to
evaluate boundary layer conditions and suction system performance, followed by the conduct of the
tests, data acquisition, and evaluation of test results. This task is reported in volume I, along with
an overview of the program.

2.4 BOEING 757 WING DESCRIPTION

The HLFC test panel replaced part of the left wing of a Boeing 757. The general arrangement and
principal dimensions of the airplane are shown in figure 2.4-1, and the wing structural arrangement
is shown in figure 2.4-2. The wing primary structure consisted of outboard spar boxes cantilevered
from a center section box contained within the fuselage. All three boxes were sealed to form integral
fuel tanks. Each box was built up of front and rear spars, lower panels, and upper panels. The
outboard wing boxes incorporated ribs normal to the outboard rear spar. The inboard wing had a
trailing edge extension to accommodate the landing gear support beam. The movable elements of
the wing included an aileron at the wingtip, six spoilers aft of the rear spar, two double-segment
trailing edge flaps, and five leading edge slats.

Various components of the wing were defined in different coordinate systems for design and
manufacturing convenience. For aerodynamic analysis, spanwise location was given by the wing
buttock line (WBL), and the fore-and-aft coordinate was given as a fraction of local wing chord
(sometimes supplemented by body station (BSTA) where an absolute reference was needed). For
HLFC structural and suction system design and analysis, outboard slat station (OSS) was used for
spanwise locations. Definitions of BS, 0SS, and WBL are shown in figure 2.4-3.
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Leading edge features are shown in figure 2.4-4. The fixed part of the leading edge structure
consisted of machined aluminum alloy ribs with bonded fiberglass honeycomb stabilized surfaces.
The lower surface was made up of Kevlar laminate panels that were removable for access. Four
individual tapered-chord slats were outboard of the engine nacelle, and a single constant-chord slat
was inboard of the nacelle. Each slat was supported by two circular arc steel tracks and moved by
two rotary actuators driven by an electric motor via a torque tube. The slats had two deployment
positions: ungapped for takeoff and gapped for landing, as depicted in figure 2.4-5. (Note that
actuation of the Krueger flap on the HLFC test panel was required to be integrated with the actuation
of the slats on either side of it.)
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Figure 2.4-4. Boeing 757 Leading Edge Slat Design



Takeoff Position (No Gap) Landing Position (Gapped)

Figure 2.4-5. Leading Edge Slat Positions
2.5 DESIGN OBJECTIVES AND CONSTRAINTS

The 757 long-range cruise condition, M=0.80at CL=0.50, was the design point chosen for the HLFC
flightexperiment. This was slightly faster than the point for highest M(L/D), as shown infigure 2.5-1.
The variation of altitude with gross weight at the design point condition is also shown. The applicable
weight range of the test airplane was from 160,000 to 220,000 1b.

Because the portion of the test panel forward of the front spar was to be completely rebuilt, it was
possible to refine the external contours to provide a pressure distribution more favorable to HLFC
than the pressure distribution of the original 757s. Previous studies (refs. 11 and 12) had indicated
a number of desirable features for HLFC airfoil sections on a sweptback wing. As shown in figure
2.5-2, these features included—

a.  Rapid initial acceleration to limit the extent of the region where suppressing crossflow
instability required intensive suction. :

b. A slight negative pressure peak at the end of the initial acceleration to attenuate the
crossflow boundary layer.

c.  Gentle acceleration aft of the suction region just sufficient to keep the Tollmien-
Schlichting (TS) instability in check.

d.  Laterecovery (i.c., shock location), possibly aft of 65% chord, with local Mach number
not exceeding 1.15.

While a stronger pressure gradient aft of the suction region would be favorable for the TS
amplification, the associated crossflow boundary layer would be vulnerable to CF instability.
Furthermore, because of the limitation on Mach number at the shock, the favorable pressure gradient
would reduce the achievable lift coefficient '

The modifications to the wing contours in the HLFC test section were aimed at fulfilling the above
objectives as far as the constraints imposed on the design permitied.
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One such constraint was that no contour changes were allowed aft of the front spar, preventing
postponement of the pressure recovery point. Another was that no change in slope was permitted at
the mating point of the leading edge and the spar box. This, in conjunction with other design
guidelines regarding the curvature distribution of practical transonic airfoils, limited the allowable

steepening of the initial pressure gradient.

Because of the requirement to protect the leading edge from insect accretion during landing and
takeoff and the need to eliminate gaps on the upper surface, leading edge slats Nos. 3 and 4 were
replaced by Krueger flaps. These flaps were required to provide low-speed flight characteristics
comparable to those of the original 757.

The initial design called for suction to be applied along the entire 22-ftlength of the new leading edge,
but the suction region was later reduced by 5 ft to adapt the design to the capacity of the available
suction pump.
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2.6 SURFACE QUALITY REQUIREMENTS

Guidelines for two-dimensional (2D) surface quality requirements on laminar flow airplanes were
firstestablished during the Northrop/USAF X-21 LFC research program (ref. 7), using the extensive
database of previous boundary layer research and the results of specific LFC-related experiments.
More recent flight and wind tunnel tests by NASA, Boeing, and others (refs. 13, 14, and 15) have
added to this database, resulting in further refinements but not substantially changing the Northrop
criteria.

There are two categories of surface imperfections to be dealt with: 2D imperfections, such as
waviness, Steps, gaps, joints, rivets, and dents (depending on the value of d/k), and three-dimensional
(3D) types, such as insect residue, paint graininess, and accumulated dirt, all of which behave in the
same manner whether they are individual protuberances or sparsely distributed when the values of
d/k are in the general vicinity of 0.5 to 10. At Mach numbers up to0 moderate supersonic speeds, 2D
imperfections introduce TS-type disturbances into the boundary layer, and their effects on transition
are affected by boundary layer stability, whereas 3D surface imperfections bypass stability effects
and cause premature transition very near the individual imperfection when it is a critical size.

Surface tolerances are generally more stringent in the forward region, where the boundary layer is
relatively thin, but other factors may mitigate this rule. For example, suction or a strong favorable
pressure gradient may allow wider tolerances for waviness but they may also promote transition due
to a 3D discontinuity. Increasing unit Reynolds numbers (decreasing altitude) leads to tighter
tolerances for both 2D and 3D protuberances, but in a different manner. For 2D, increasing unit
Reynolds number increases the growth of the 2D type of boundary layer disturbances, leading to a
forward movement in transition. For 3D, increasing unit Reynolds number decreases the height of
3D roughness that triggers immediate transition near the roughness. Also, crossflow in the leading
edge may reduce the size of the tolerable 3D protuberances. The limits specified for the 757 HLFC
test section at the design condition are summarized in figures 2.6-1 and 2.6-2 for the most common
types of surface imperfections. Surface quality requirements are also discussed in volume III of this

report.

Finally, figure 2.6-3 illustrates so called "aerodynamic” roughness, which arises from the fact that
the streamtubes sucked in to perforations create an uneven "virtual surface” that is analogous to a
physical surface with distributed roughness. While there are nodata available to prove that this effect
actually exists, it was regarded as prudent to allow for the possibility. An unpublished analysis
attributed to Pfenninger (who also provided the figure) indicates that the originally contemplated
hole spacing of 0.025 in would produce an equivalent roughness heightK = 0.003 in, but a maximum
value of k of only 0.001 in was allowable close to the airfoil nose. The analysis also showed that
reducing the spacing to 0.010 in would reduce k to the required value. The 0.010-in spacing was
accordingly adopted for the most forward perforation area.
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3.0 HLFC WING SECTION EXTERNAL CONTOUR ANALYSIS AND DESIGN

Before the present contract, preliminary studies had been carried out regarding the feasibility of the
HLFC experiments on the Boeing 757 airplane. This work included computation of pressure
distributions, boundary layer stability characteristics, and preliminary estimates of suction
requirements, as well as the extent of laminar flow achievable on the basic 757 wing. The conclusion
of these studies was that the 757 was well suited for the proposed flight experiment.

Preliminary work on the design of the HLFC wing modification had also been started. It focused
mainly on delineating trades between airfoil contour changes, suction requirements, and the
achievable extent of laminar flow. By the time the contract was awarded, the applicable trades and
limitations were fairly well understood, and a sound basis for the final design was established. These
studies confirmed Pfenninger’s recommendations (ref. 16) that it would be advantageous to start the
suction as close to the attachment line as possible and to make the forward suction peak high and
narrow, rather than low and wide. The required suction could be reduced by shortening the zone of
acceleration (i.e., by steepening the initial pressure gradient) and allowing a slight pressure peak to
form following the initial acceleration. This could be achieved by using a blunter leading edge.

3.1 ANALYTICAL METHODS

The principal analytical design tool for the wing contour modifications was a three-dimensional (3D)
transonic viscous flow computer code system capable of computing flows around wing/body/nacelle
configurations. Major components of this system are an enhanced version of Jameson’s FLO28
transonic inviscid flow code (ref. 1) and a 3D boundary layer analysis by McLean (ref. 2). Other
components include a grid-generation program that treats the wing, fuselage, nacelles, and struts
simultaneously, so that all mutual interference effects are included. Figure 3.1-1 shows the grid on
the airplane surface. '

The flowfield is discretized by the the grid-generation program, and a finite-volume method is used
to solve the full potential equation for the external flow. Artificial viscosities are applied to all three
directions in the supersonic region to capture shocks. The surface velocities, together with Reynolds
number and temperature, are used to calculate the boundary layer on the wing. Boundary layer
transition on the wing is assumed at the first appearance either of an adverse pressure gradient or of
laminar separation, and is assumed fixed at 2% chord on the lower surface.

The wing geometry is then updated by the displacement thickness of the boundary layer, and the
inviscid flow is computed again. The new surface velocities are then used to compute the wing
boundary layer, and the process is repeated until the the solutions stabilize, usually within six to eight

cycles.

The gridding of the 757 wing for the 3D boundary layer analysis is shown in figure 3.1-2. Near the
expected shock location and the leading and trailing edges, the chordwise paneling was made more
dense. In the vicinity of the engine nacelle and the side of the body, denser spanwise spacing was also

provided.

Figure 3.1-3 shows a comparison of pressure distributions computed by this system of codes with
wind tunnel test data for the original 757 wing. The agreement is generally fairly good, although
some tendency for underpredicting the peak pressures can be observed. (The pressures encountered
in flight can be expected todiffer even more, because the analysis paneling is more faithful to the wind
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tunnel model than it can be to the real airplane wing, which not only is more complex in detail, but
is subject to varying aeroelastic deformation at different weight conditions. Furthermore,computational
fluid dynamics code calibration has mostly been done using plentiful wind tunnel pressure data at
relatively low Reynolds number, rather than with flight test surveys at full scale.)

Conditions: Computed
oy *M., =0.80 12p. e . Measured
+C_ =045

« Rt =3.5x10°

. 02 04 06 08
x/c

Section A

1.0

Figure 3.1-3. Correlation of Computed 757 Wing Pressure Distributions With Wind Tunnel Test Data
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3.2 ORIGINAL 757 WING SURFACE PRESSURES

Computed pressure distributions for the original 757 wing geometry at three spanwise stations within
the prospective HLFC test region are shown in figure 3.2-1. The CP distributions at the center and
outboard sections closely resemble the one desired for HLFC (fig. 2.5-2) in that they show a rapid
acceleration at the leading edge, followed by a gentle favorable pressure gradient until the recovery
point is reached at about 40% to 50% chord. However, in the vicinity of the nacelle, the pressure
distribution is less favorable, having an early recovery point preceded by a moderately strong
acceleration due to local unsweeping of the isobars. This behavior is attributed to interference due
to the engine nacelle, and it caused some difficulty in the design of the HLFC leading edge.
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Figure 3.2-1. Theoretical Pressure Distribution on the Basic 757 Wing at Design Condition
M=0.80, CL=0.50
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3.3 DESIGN OF THE MODIFIED WING CONTOUR

Figure 3.3-1 illustrates the approach to contour modifications: A more rapid initial acceleration for
crossflow attenuation could be obtained by a slight blunting of the leading edge. At the same time,
the lower surface of the leading edge could also be revised to improve the characteristics of the
Krueger flap, whichreplaced the slatused on the basic 757 airplane. The lower surface contour ahead
of the front spar forms the upper side of the extended Krueger flap. It is very flat where a curved
contour would be more desirable. This could readily be achieved by adding a shallow bulge to the
lower surface and by adding a folding blunt leading edge (called a “bullnose™). The extent of actual
leading edge contour modifications relative to the basic 757 wing contours is shown in figure 3.3-2
for four sections of the HLFC test panel. (Appendix A provides additional cross sections on gridded
plots. Data relating to leading edge radii, which affect attachment-line flow characteristics

(discussed in sec. 5), are given in appendices B and C.)

At the beginning of the program, it was planned that the suction area would start just outboard of the
nacelle, at WBL 270 (36% semispan), and extend through the area occupied by slats Nos. 3 and 4,
ending at WBL 495 (66% semispan). Later, the inboard boundary of the suction zone was moved
outboard to WBL 330 (42% semispan) to eliminate the need for a second turbocompressor. Because
this was done after completion of the aerodynamic analysis, airfoil contours and computation results
are shown for inboard sections that were subsequently excluded from the HLFC test span.
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Figure 3.3-1. Philosophy of Wing Contour Modifications
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WBL 290

Figure 3.3-2. Extent of Leading Edge Contour Modifications on the HLFC Test Panel

The unsweeping of the isobars in the vicinity of the nacelle had significant impact on the design of
the HLFC suction surface. It was not desirable to have large pressure variations along the “flutes”
(spanwise channels under the perforated skin that collect the suction flow), so the flutes were laid out
along isobars. Curved isobars require curved flutes, adding to fabrication complexity. It was
therefore desirable to design an HLFC wing leading edge with parallel isobars. However, the
distortion of the pressure pattern resulting from to the high-bypass-ratio turbofan engine’s large
nacelle limited compliance with this objective.

After the modified contours were tentatively defined, an attempt was made to eliminate the
unsweeping of the isobars near the nacelle by further increasing the bluntness of the leading edge to
increase the initial acceleration. This exercise, however, did not significantly improve the isobar
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pattern, even with a very large bump on the leading edge near the nacelle. Figure 3.3-3 shows the
airfoil shapes and pressure distributions for the basic 757 wing, the baseline HLFC modification, and
the blunt leading edge alternative. The nacelle effects evidently overpowered the airfoil shape
effects, because the pressure distributions did not change much, even though the airfoil was
considerably more blunt. Furthermore, past experience has shown that under off-design conditions,
that is, at lower Mach numbers, the blunt airfoils tend to develop a strong pressure peak near the
leading edge that could have some adverse effects, such as premature shock and increased drag.
Therefore, the blunter leading edge design was not accepted for the final HLFC configuration.

Nose Profiles (WBL 270)

w——— — e Original 757

————————— Baseline HLFC

Blunt leading edge

-
-
—
-~
- e ——
- e
™
=
=

Leading Edge Upper
Surface Pressure (WBL 270)

08 | ] | | 1 1
0.04 0.08 0.12 0.16 0.20 0.24 0.28
x/¢c

Figure 3.3-3. Effect of Leading Edge Blunting Near the Nacelle
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The design process was completed by smoothing the wing contour lines in both spanwise and
chordwise directions. This was necessary because airfoil sections were defined at given stations,
while coordinates of intermediate sections were derived by interpolation. This resulted in a slightly
bumpy initial shape that did not have continuous curvature in the chordwise direction (which is
desirable aerodynamically), and that was not wave-free in the spanwise direction (which is desirable
for fabrication as well as for aerodynamic reasons). Figures 3.3-4 and 3.3-5 show the results of the

smoothing process.
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Figure 3.3-4. Wing Geometry Smoothing—Spanwise
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3.4 CALCULATED PRESSURE DISTRIBUTIONS ON THE MODIFIED WING

3.4.1 Design Conditions

Theoretical pressure distributions for the modified HLFC test panel at M = 0.80 and Cp. =0.50 are
shownin figure 3.4-1. (Gridded plots, forall stations-analyzed, are presented in app. D.) Comparison
with figure 3.2-1 shows that the contour changes succeeded in steepening the initial pressure gradient
at midpanel and outboard, but the pressure recovery point was not affected much because the
modification was entirely ahead of the front spar. The unsweeping of isobars near the nacelle causes
large spanwise pressure variations along constant chord lines near the leading edge, as illustrated in
figure 3.4-2. If the internal flutes had been located along these lines, the external pressure variation
could have resulted in excessive suction inboard and inadequate suction, or even outflow, outboard.
(Outflow could have been expected to cause immediate boundary layer transition, and so was not
permissible.) It was therefore necessary to choose between placing separator dams in the flutes or
laying out the flutes along isobars. While dams in the flutes appeared to be a simple solution, they
could have caused abrupt spanwise steps in suction level, which would have had unpredictable
effects on transition. Therefore, it was decided to take the conservative approach of building curved
flutes that ran along isobars. The theoretical isobar pattern within the front 0.5 in of the suction
surface is shown at left in figure 3.4-3. The flute layout in this region followed the same pattern.
(Larger scale isobar plots are provided in app. E.)

WBL 290

Figure 3.4-1. Theoretical Pressure Distributions for the Modified 757 HLFC Wing; M = 0.80, C = 0.50,
and R/t = 1.61 million (h = 39,000 ft)
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Farther aft, the isobars curved back sharply, as illustrated at the upper right of figure 3.4-3. There,
it was not feasible to lay out the flutes along the isobars. At the design condition, the desired
distribution of suction quantity could have been obtained by varying the skin porosity over flutes laid
out along approximately straight lines. Thereis a penalty, however, for departing from the isobars.
Because outflow can be expected to cause immediate transition, the entire flute must always be
sucked hard enough to prevent outflow over its entire length. At off-design conditions, a mismatch
in external and internal pressures will inevitably be present, requiring local oversuction and a
consequent increase in compressor load.

34.2 Off-Design Conditions

After the airfoil contours were finalized, the flow analysis was extended to a number of off-design
flight conditions where operation of the HLFC system was planned. These conditions included
variations in Mach number and lift coefficient at cruise, as well as climb, descent, and holding at
various speeds and altitudes. Figure 3.4-4 illustrates the range of off-design conditions analyzed.

An overview of the effects of Mach number and lift coefficient on the chordwise pressure
distributions at the test panel midspan (WBL 387) is presented in figure 3.4-5. It is evident that at
low Mach numbers (M < 0.78) an acute pressure peak develops near the leading edge and the
subsequent adverse pressure gradient will not allow much laminar flow. On the other hand, at Mach
numbers and lift coefficients higher than the design values (M > 0.80 and C > 0.50), the pressure
recovery point shifts rearward and the extended region of mildly favorable pressure gradient may
allow more laminar flow. In fact, the most extensive laminar flow could be expected not at the design

point of M = 0.80 and Cy. = 0.50, but at somewhat higher Mach numbers and lift coefficients. '

1.0
Design point (M = 0.80, C_= 0.50) Secondary off-design
envelope
L
08 - M35 .
Maximum
Primary off-design
o6l envelope
G
0.4
02
L I
(M _D-) = constant—/ |
|
0 1 1 1 1 1 | 1
0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Mach number

Figure 3.4-4. Off-Design Analysis Plan
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Figure 3.4-5. Theoretical Wing Pressure Distributions

More detailed comparisons for the effects of Mach number and lift coefficient within the primary and
secondary test envelopes are presented in figures 3.4-6 and 3.4-7. These comparisons give further
support to the observation that the most favorable conditions for extended laminar flow would be
found at somewhat higher Mach numbers and lift coefficients than the design condition.

Figure 3.4-8 shows pressure distributions for climb and descent conditions at M =0.60 and M =0.70,
respectively. Normal climb above 10,000 ft takes place at a calibrated airspeed of 290 kn,
corresponding to a lift coefficient of approximately Cp = 0.40, with gradually increasing Mach
number as the airplane gains altitude. Optimum calibrated airspeed for descent is 250 kn
(approximately C = 0.50) with gradually decreasing Mach number from M =0.80to M = 0.38 as
the airplane loses altitude. In both climb and descent, a pronounced pressure peak is present near the
leading edge, which is expected to preclude the achievement of extensive laminar flow.
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Figure 3.4-7. Theoretical Pressure Distributions for Off-Design Conditions (Continued)
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4.0 BOUNDARY LAYER STABILITY ANALYSIS AND DETERMINATION
OF SUCTION REQUIREMENTS

Once a geometry for the test panel had been determined on the basis of the HLFC guidelines and the
corresponding pressure distributions were known, the next aerodynamic design task was to define
an economical suction distribution that would provide the maximum practical extent of laminar flow.

4.1 STABILITY PREDICTION METHODOLOGY

The principal analytical tool for this work was the Unified Stability System (USS) computer code,
developed by Boeing under NASA contract (ref. 3). This code uses Mack’s method (ref. 4) to
generate the disturbance amplification characteristics of the two major boundary layer instability
modes in three-dimensional compressible flow, for given distributions of external pressure and

suction flow.

The code is a combination of several subprograms: First, boundary layer velocity profiles (both
tangential and crossflow (CF), including the effects of suction) are calculated using the method of
reference 2. This is followed by analyses of both Tollmien-Schlichting (TS) and CF instabilities to
determine amplification rates. The mathematical basis and solution procedure in both are very
similar, but the TS procedure treats waves that propagate more or less in the direction of the local
external flow, while the CF procedure analyzes waves that propagate across it.* The amplification
rates are integrated separately to obtain amplification ratios. The natural logarithms of the
amplification ratios (referred to as “N-factors™) are more convenient to plot and discuss than the
ratios themselves. Figure 4.1-1 shows the computation sequence and indicates the appearance of the

data.

The method of transition prediction is illustrated in figure 4.1-2. The TS amplification exponent,
NTS, is plotted against the CF amplification exponent, NCE, with the distance along the surface, s/
¢, as a parameter. Transition is predicted when this curve crosses the transition criterion line, an
empirically derived boundary. When CF effects are dominant, the trajectory of N-factors leans to
the right, but when the amplification is mainly due to TS instability, it runs more or less parallel to
the Ng axis. Where NCF remains very small, the analysis may carry into the pressure recovery
region, and computation of NT§ may be subjectto considerable uncertainty. In those cases, judgment
must be applied to estimate a transition point. (The stability calculations for WBL 447, discussed
below in sec. 4.2, are an example.)

Figure 4.1-3 shows the transition criterion used in the present design study. It was based on
correlation of N-factor computations by the USS code with experimental transition data for the
NASA F-111 NLF glove (ref. 5) and the Boeing 757 NLF glove (ref. 6).T A point from Boeing
experiments on a T-33 with an NLF glove (ref. 15) is also shown. Boundaries of the data scatter band
are shown by the dotted lines.

* The wave angle, defined as the angle between a normal to the wave front and the flow direction, will be near 0 deg
f%r ’I‘ng)vaves in incompressible flow, or 0 to 70 deg in compressible flow. Wave angles for CF disturbances are from
70 to 90 deg.

+ Correlation of N-factor computations by the USS code with experimental transition data shows considerable scatter.
Use of such a criterion is an empirical expedient in the absence of a more rigorous method. One of the objectives of
the present program is to provide additional experimental data to support development of improved transition
prediction methods.
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Figure 4.1-1. Main Steps of the Computation Sequence in the USS Code
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4.2 SUCTION REQUIREMENTS AT INDIVIDUAL SPAN STATIONS

Moderately swept transport airplane wings usually have sufficient CF to cause early transition.
Controlling CF instability is therefore of paramount importance. CF instability can, to some extent,
be mitigated by geometric means (that is, airfoil tailoring) but boundary-layer suction is the most
direct means of preventing crossflow-induced transition. The influence of suction on the N-factor
trajectory is illustrated in figure 4.2-1. Without suction, the uncontrolled CF instability pushes the
amplification trajectory to the right, where it intersects the transition criterion line at a low value of
s/c. For the case shown, transition would be expected to take place at about 14% chord. With
adequate suction, the trajectory moves closer to the NTS axis (i.e., showing low CF amplification),
and NTS is somewhat reduced as well. The intersection with the transition boundary now takes place
at about 50% chord. Generally, the practice was to apply sufficient suction to bring the trajectory

close to the N axis, and if possible, to keep it clear of the transition data scatter band.

In the discussions below, three different nondimensional suction quantity parameters are used. They

are—

Co

12

10

= total suction coefficient = (total suction mass flow)/pooVeoSsp,

\ 757 Midspan Section

Without suction

Transition
data scatter
band

B N I T I N I I I

Transition
criterion

Figure 4.2-1. Effect of Suction on Amplification Characteristics
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where Sgp is the area of the HLFC suction panel. (The “HLFC suction panel” includes all the win
chord, to the trailing edge, over the span where suction is applied. In the presentcase, Ssp = 190.78 ft

¢q = chord suction coefficient = (suction mass flow per unit span)/PeVeC,
where c is the local streamwise wing chord, and
¢q' = local suction coefficient = (suction mass flow per unit area)/PooVeo

The actual process of determining suction requirements for the HLFC test panel began with stability
analyses at several spanwise stations, using an assumed initial cq' distribution. The calculations then
were repeated with revised cq' values until ¢ was minimized, while maintaining the maximum extent
of laminar flow. The typical tailoring sequence is illustrated in figure 4.2-2.

First, the suction peak (A) in the high-crossflow region was made narrower (B), resulting in lower
Cq, but at the expense of slightly NcF. Then the peak itself was lowered (C) until the predicted
transition moved forward. Finally, adding a little more suction in the region between the high-
crossflow and low-crossflow sectors (D) reduced Ncg to the level lost in the first suction peak
reduction, while still giving a net reduction in cq, relative to the starting point.

Stability calculations were also carried out for a number of off-design conditions. Their extent is
illustrated in figure 4.2-3. Altogether, nearly 100 cases were analyzed, including 10 flightconditions
each at three spanwise stations (WBL 290, 387, and 479) with suction variations, plus six additional
spanwise stations (WBL 270, 311, 360, 416, 477, and 513) at the design condition. Altitude
variatons were also included in the calculations, to investigate Reynolds number effects. A
summary of boundary layer growth at the stations is given in appendix F. Detailed results of
boundary layer analysis are included as appendix G.

Because of the differences in pressure distribution between inboard and outboard stations, two
distinct behaviors were found in the effects of cq' tailoring on transition. WBL 311 and WBL 447
will be discussed. At WBL 311 theinitial flow acceleration is more gradual than at WBL 447 because
of the nacelle interference effect described in section 3.3, resulting in a longer CF region, whereas
at WBL 447 the acceleration takes place within the first 5% of chord. Figure 4.2-4 compares the
pressure and suction distributions at these two stations. The computed amplification factors are
shown in figure 4.2-5. The graphs show the CF amplification factors for a range of wave numbers
at zero frequency and the TS amplification factors for a range of frequencies at a wave angle of
50 deg, which are the most critical conditions. The dominance of CF amplification at WBL 311 is
very evident, whereas TS amplification is approximately the same at both stations. The range of CF
wave numbers and TS frequencies is illustrated in the contour plots of figure 4.2-6. Finally, the
impact of pressure distribution on the boundary layer instability and predicted transition is illustrated
in figure 4.2-7, where the pressure distributions, the Ns and NcF envelopes, and the transition
criterion (NTs-NcF) diagrams for the two cases are shown together. (Note that in constructing the
Nts-Ncf diagram, the envelopes of the individual amplification factor curves were used. For the
remainder of this discussion, only the envelope curves will be shown.) At WBL 311, transition is
predicted at about 36% chord, while at WBL. 447 it is near 50%, but in both cases the limits are
imposed by the onset of pressure recovery. At WBL 311 more suction could further reduce the CF
instability, but not much laminar flow could be gained because of the early recovery point. At WBL
447 the CF instability is almost entirely eliminated, but again the pressure recovery at 50% chord
limits the extent of laminar flow.
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Note: At each condition at or above M = 0.79, three spanwise stations (WBL 290, 387, and 479) were
analyzed, except for the design condition at 39K-#t altitude, in which case five additional stations
woere also analyzed (WBL 311, 360, 416, 447, and 513).

Figure 4.2-3. Scope of Boundary Layer Stability Calculations
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The effects of suction distribution tailoring are illustrated in figures 4.2-8 through 4.2-10. Narrowing
the high suction region (i.e., going from type A suction to type B as indicated in fig. 4.2-2) allows
some reduction in cq at the expense of slightly increased CF amplification (fig. 4.2-8). A small
increase in cq’ at the “comer” (a type D distribution) can restore the condition of near-zero NcF at
transition (fig. 4.2-9). While this remedy was effective over the outer portion of the HLFC panel,
it did not work at the inboard end, where the slow acceleration caused the CF instability to be very
strong. Figure 4.2-10 shows the stability analysis results for WBL 270 (just outboard of the nacelle)
with a type C suction distribution atcq=2.74 x 10-5 and also with an unorthodox distribution (E) that
puts a large amount of extra suction in the corner at ¢q = 5.79 x 10°5. With the conventional suction
distribution, crossflow-induced instability is the dominant factor, and transition is predicted at about
26% chord. The extra suction does bring the amplification trajectory closer to the Ns axis but not
enough to affect transition very much. Thus a 211% increase in suction produced only a 5% chord
increase in the extent of laminar flow. The effect of a further increase of suction (F) could not be
evaluated because the stability code would notconverge on a solution. In any case, because pressure
recovery at this station begins not far past 30% chord, the potential for additional improvement is
small. (When the test panel span was later reduced to adapt to the capacity of a single turbocompressor,
WBL 270 was outside the laminarized region anyway.)

The typical effects of altitude (more precisely, of unit Reynolds number) are shown in figure 4.2-11.
The data pertain to WBL 479 at Cr =0.50, M=0.80, and h = 39,000 and 42,000 ft (R = 1.61 million/
ft and 1.40 million/ft, respectively). At the higher altitude, both the CF and the TS amplification
factors are reduced, but the effect is more pronounced on the TS amplification. In both cases,
transition is caused by TS instability, but it is postponed by 5% chord at the higher altitude.

44



External Pressure and Suction Distributions

-1.2 20
T"”Tspe A L Endof high-
suction region
-0.8p 16 — Type B;cq=5.33x 10°5
Upper surface
-0.4 pee o 12
x o m -5
o Type A;cq =5.58x10
Q
0 8
0.4 4
0.8 1 i 1 i 0 1 i 1 1
0 004 008 012 016 020 0 004 008 012 016 020
x/c s/c
Ampiification Ratlos
7
Transition
‘criterion
Data
scatter band

10

Figure 4.2-8. Typical Effects of Suction Tailoring—Type A to Type B Distribution; M = 0.80, Cp =0.50,
h=35,500 1, Ry=23.1x 106, WBL 479

45



External Pressure and Suction Distributions

-1.2 20
Type C End of high-
Type D suction region
081 16 Type D; Cq= 536 x 10 5
<t
e
-04 |- x 12
e Type Cicq=5.03x 105
G
0 i ! 8
04} ab
\
[
0.8 1 L 1 1 0 1 1 1 1
0 0.04 0.08 0.12 0.16 0.20 0 0.04 0.08 0.12 0.16 0.20
x/c s/c
Amplification Ratios
7
Nrs
6 12
\
\
5 N = Transition criterion
N.rs 4 Data scatter band
Ner
2
Type D
1
~ -
09 6 8 10

Figure 4.2-9. Typical Effects of Suction Tailoring—Type C to Type D Distribution; M = 0.80, C; = 0.52,
h=39,000f, Rg = 19.77 x 106, WBL 479

46



External Pressure and Suctlon Distributions

Type C

End of high-
Type E suction region

04

0.8 1

0.08 0.12 0.16 0.20

x/c

20

161

Increased suction (Type E)
cq=579x10-5

Type C; Qg = 2.74x10°°

Type F
(computation
''''' 5 tailed)

Amplification Ratios

0.2 0.3 0.4
x/c

12

10

0.08 0.12 0.16 0.20

\

Figure 4.2-10. Effect of Increased Suction in the Vicinity of the Engine Nacelle; M = 0.80, Cy = 0.50,

47

h = 39,000 #t, A, = 28.8 x 106, WBL 270



Extefnal Pressure and Suction Distributions

-1.2 20
-0.8 16 =
04 <« 12H Type C; Q= 5.03x 107>
o
o
[0 ‘o
0 Q 8 s
04 4
08 1 1 1 ] 0 ) | 1 1 1
0 0.04 0.08 0.12 0.16 0.20 0 0.04 0.08 0.12 0.16 0.20
xe Amplification Ratios sle
7
‘\:TS
6 ’
12
\
5 : Transition criterion
N
RE] 4
Ner
3 -------
o4 42,000 ft
)
2 b
/YA N I SR
[/ o
1 Ner. s
N
1 1 L L
0
0 0.1 0.2 0.3 0.4 0.5
x/c Ncr

Figure 4.2-11 Effect of Altitude on Amplification Characteristics;
M= 0.80, C; = 0.50, WBL 479

48



43 OVERALL SUCTION REQUIREMENTS

Figure 4.3-1 shows the calculated suction requirement over the whole span of the HLFC panel for
the design condition (M = 0.80, CL = 0.50, and h = 39,000 ft). The symbols show the WBL span
stations where calculations were made. The section cq increases going outboard, but the suction flow
per unit span (proportional to ¢ times Cq) diminishes, except at the inboard end. There, the early
pressure recovery limits the extent of laminar flow, so additional suction would have no effect. The
mean values of cq and ccq over the HLFC panel are 4.9 x 10-5 and 6.8 x 107 ft, respectively. The
slight dip in cq at WBL 387 amd 416 is not considered significant because of the “cut and try” nature
of the optimization procedure.

The stability calculations indicate laminar flow at least up 10 the pressure recovery line (the
approximate location of the shock), as shown in figure 4.3-2 by the dashedline. Itruns approximately
along the 45% chord line outboard, then moves forward to about 24% chord at the inboard end.
However, prediction of the recovery line by the computer code is somewhat uncertain because the
computation tends to smooth out abrupt changes in pressure, such as at the shock. Therefore the
actual pressure recovery point may lie somewhat downstream of the computed one, and an additional
5% to 10% chord laminar flow may be possible. This region is marked by shading in the figure. The
potential laminar zone may therefore reach 50% to 55% chord over the outboard half of the test area,
decreasing gradually to about 30% to40% chord atthe inboard edge of the suction region (WBL 330).

For off-design conditions, the stability calculations were carried out for only three spanwise stations,
resulting in a sparse definition of the cq distribution. Nevertheless, the trends with Mach number,
Cr, and altitude are clearly identifiable. Figure 4.3-3 shows the effect of varying Cp in the range from
0.40 t0 0.55 on the required cq and predicted transition at M = 0.80 and h = 35,000 ft. More suction
is required atlower Cs butin spite of this, less laminar flow would be obtainable. This is true because
the pressure distributions are more conducive to laminar flow at higher lift coefficients, particularly
in the central and inboard regions of the test panel. :

The effects of altitude at M = 0.80 and Cr_ = 0.50 are illustrated in figure 4.3-4, for h = 35,000 and
42,000 ft. At the higher altitude, less suction is required and the extent of laminar flow is increased.
Because both cases have the same pressure distributions, the difference is due to the decreased
disturbance growth at the lower unit Reynolds number.

49



Initial

Suction area:

300

340

460

500

- an w em e e s o e e e o o

:vo:aoxo

0 380 340 300 260

42

460

WBL, in

Figure 4.3-1. Spanwise Variation of Tailored Suction Fiow Rates

50



Possibie extent of laminar flow (with recovery further aft)

pressure recovery)

Predicted transition front (limited by ' /
_, g

V
=
/
/
—

447 416 387 360 311 290 270

Stations for stability calculations

| | l I
450 400 350 300 250

—
b
.

550 500
Span station—WBL, in

Figure 4.3-2. Predicted Extent of Laminar Flow, Design Condition

51



-
::::.'"-— -~
6 ot
<&

° N
x
o:r 4=
x
L

) CL-0.55

0 | ] | | ]

500 450 400 350 300

Predicted extent of laminar flow ] ’

Suctio i
ucian region % chord
10
4 —_——_——
30
40
5
6 p
479 387 290
Stations for stability calculations
| ] | | ] | |
550 500 450 400 350 300 250

Span station—WBL, in

Figure 4.3-3. Effect of Lift Coefficient on Suction Rates and Transition; M = 0.80, h = 35,000 ft

52



s h = 35,000 ft, Ruft = 1.89 x 10°
-
———-.—
6 |-
3=
<
e h = 42,000 ft, Rt = 1.40 x 106
»
T 4 L
(4]
b4
e
2 L
o | | | | |
500 450 400 350
WBL, in

Predicted extent of laminar flow

h= 42,000 ft
h = 35,000 ft

% chord
-50
- 60
- 70
387
Stations for stability calculations
| | ] | | ! |
550 500 450 400 350 300 250

Span station—WBL, in
Figure 4.3-4. Effect of Altitude on Suction Rates and Transition; M = 0.80, C, = 50

53



44  ADJUSTMENTS TO THEORETICAL SUCTION DISTRIBUTIONS

The analyses described above were done before the final configuration of the suction surface and
flute arrangement were established. The calculations were carried out independently for individual
sections. Consequently, the cq distributions showed some spanwise variation, as noted above in the
discussion of figure 4.3-1. Therefore, the theoretical cq' distributions were adjusted to make them
mutually consistent and compatible with the hardware design. The adjustments affected both the
forward region, where the flutes are curved to follow the external isobars, and the suction termination
point. The aftmost flute was eliminated to provide space for the joint between the suction surface
and the front spar. The adjusted ¢’ distributions are shown in figure 4.4-1. The peak values of cg’
are 14 x 10 for CL = 0.40, 13 x 10 for C. =0.50, and 12 x 10 for C1 = 0.60, respectively (see
fig. 4.4-1 for connecting points A-B). The intermediate zone between the high- and low-suction
regions is defined by point C, where cq'=4.00 x 104 and point D, where s/c = 0.04. The low-suction
region, with ¢g' = 2 x 104, terminates at a fixed distance from the leading edge, and therefore at
increasing s/c with distance outboard (point E).

The adjusted spanwise distributions of cq and ccq for the design condition are shown in figure 4.4-2.
The irregularities have been eliminated and the cq levels somewhat reduced. The average ccq is 6.54
x 10 ft. The resulting total flow coefficient for the entire test area is

CQ = J(ceq)dysp / Spanel = 4.72x107 é =] (ccq)dysp = 4.72x107°
The corresponding total volume flow rate is
Q = VooSpanelCq = 6.97 ft3/s
where
Vo =774.4 ft/s at M = 0.80 and h = 39,000 ft,
and the mass flow rate is
W = Poo g Q =0.1368 Ib/s = 8.2 1b/min

These adjusted suction distributions were the basis for the internal flow system design. Thatactivity
is described in volume IV of this report.
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5.0 ATTACHMENT-LINE FLOW TREATMENT
5.1 BACKGROUND AND DESIGN CRITERIA

The third form of boundary layer instability that may cause early transition on swept wings is called
“attachment-line turbulence contamination.” It was first observed during early laminar flow flight
experiments in England (refs. 17 and 18) and was encountered also on the Northrop/USAF X-21
research airplane (ref. 19). Premature transition may be caused by turbulence convected by the
boundary layer of the spanwise flow along the leading edge attachment line, that is, the surface
streamline separating the flows above and below the wing. Disturbances may originate from
turbulent eddies in the fuselage boundary layer, from vortices forming at the wing/fuselage
intersection, or they may arise within the attachment-line boundary layer itself. The behavior of the
attachment-line boundary layer depends on its momentum thickness Reynolds number

Ra . = PalWalal
Bal Hal

where the subscript “al” denotes “attachment line.” The attachment-line boundary layer momentum
thickness, 6,1, depends on the sweepback angle, the unit Reynolds number, and the velocity gradient
normal to the attachment line. That gradient is strongly influenced by leading edge geometry.
Appendices B and C include wing cross sections normal to the leading edge and leading edge radius

data.

According to references 19, 20, and 21, Rgy) should be kept less than 94 to 100 to ensure that the
flow stays laminar.

5.2 ATTACHMENT-LINE FLOW CONDITIONS ON THE MODIFIED WING

Figure 5.2-1 shows Rgy (as calculated by a subroutine included in the transonic flow computer code
discussed in sec. 3.1, above) for several flight conditions in the cruise envelope. It can be seen that
in the testregion, R@,] often approaches and sometimes exceeds the critical value of 100, particularly
at cruise altitudes below 35,000 ft. Consequently, some kind of treatment against attachment line
transition was deemed necessary.

5.3 ATTACHMENT-LINE FLOW STABILIZATION BY PASSIVE SUCTION

Initially, the application of a “Gaster-bump” (a bump on the leading edge that creates a local
stagnation point and thus diverts the leading edge boundary layer (ref. 22)) was considered. It had
been proven effective by previous experiments, such as the laminar flow test fixture on the Avro
Lancaster (ref. 23) and the NASA Jetstar/LEFT suction glove (ref. 8). Other schemes that had been
used before with success, such as a notch in the leading edge, used on the NASA/Boeing 757 NLF
glove (ref. 6), or a laminarized fence on the leading edge, used on the X-21 (ref. 7), were also
considered but judged not practical for the present case.
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Figure 5.2-1. Attachment-Line Reynolds Number

It was finally decided to apply suction at the leading edge inboard of the HLFC test panel, because
a Gaster bump could always be added later if it were needed, whereas retrofitting suction would be
much more difficult. Two arrangements were considered (fig. 5.3-1), one using chordwise slots
across the leading edge and the other using perforated skin. The former scheme had been tried
previously on the X-21, but perforations were chosen here because large areas of skin were to be
perforated anyway, and forming problems were foreseen for the slotted skin. It was convenient to
make the attachment-line suction independent of the main suction system, using the relatively high
external pressure at the attachment line and venting to a low pressure region on the wing lower
surface, as shown in figure 5.3-2.

In selecting the size and location of the attachment-line suction area, the movement of the attachment
line with changing flight conditions and the associated variations of external pressures were
considered. The position of the attachment line could be inferred from the calculated pressures
(sec. 3.3). Figure 5.3-3 shows the theoretical location of the attachment line along the
HLFC test span for the design condition and the two extreme off-design conditions. At the design
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Figure 5.3-3. Range of Movement of the Attachment Line at Cruise Conditions

condition, the attachment line lies 0.2 to 0.4 in below the leading edge (highlight). Atlower Crs it
moves upward (closer to the highlight) and at higher Cps it moves downward. The total excursion
is about 0.6 in. The upper and lower boundaries of the suction area were placed 1 in above and 1.5 in
below the highlight. The span of the attachment-line suction area was 6 in. At the estimated suction
rates, Rgg] in the most critical region could be reduced from the original level of 100 to about 30.
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6.0 LEADING EDGE DEVICE AERODYNAMIC DESIGN

As part of the HLFC flight experiment, a dual-purpose leading edge Krueger flap was incorporated
1o serve both as a high-lift device and as an insect and debris shield. Before the contract effort was
begun, a Boeing-sponsored, two-dimensional wind tunnel test had been performed to investigate the
high-lift geometry trades and insect protection effectiveness of a Krueger flap (ref. 24). The design
of the leading edge device used in the HLFC flight experiment was guided by the knowledge gained
from these preliminary experiments. Later, as part of the contract effort, a three-dimensional low-
speed test was conducted to evaluate the effects of the modified high-lift system on the low-speed
performance and handling characteristics of the test airplane.

6.1 DESIGN REQUIREMENTS AND APPROACH
The design requirements for the leading-edge device were—

a.  The Krueger flap that replaces the Nos. 3 and 4 slats on the left wing must provide
comparable high-lift capabilities to the slats, and the resulting asymmetrical leading-
edge configuration must not cause unacceptable handling characteristics in low-speed
flight.

b. The Krueger flap and its actuating mechanism must be compact, in order to leave room
for the suction system ducting.

¢. - The Krueger flap in the deployed position must shield the suction surface leading edge
from contamination resulting from insect accretion and other forms of flying debris

during takeoff and landing.

d.  The power to actuate the Krueger flap must be provided by the same torque tube that
drives the rest of the slats to ensure simultaneous operation.

Because of the difficult kinematics of matching deployment of the Krueger and the three-position
(retracted, gapped, or sealed) slat it was decided to modify the leading edge device control system
1o eliminate the sealed-leading-edge (takeoff) slat position. Therefore, only a two-position Krueger
was required (retracted or deployed-with-gap).

62 PRELIMINARY STUDIES

Figure 6.2-1 shows the test setup and model configuration of the two-dimensional tests referred to
previously. The chord of the Krueger flap was 12% of the wing chord. The main geometry variables
were the flap deflection angle, the height of the flap trailing edge above the wing chord plane, and
the gap between the flap trailing edge and the wing. The best high-lift characteristics were obtained
at 45 deg deflection, with both gap and height at 2.2% chord.
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An apparatus was developed to inject insects into the wind tunnel flow. Three types of insects (spring
tails, aphids, and fruit flies) were used for size variations, which at full scale would represent larger
insects. Two critical conditions were investigated with the Krueger flap at the optimum high-lift
position: (1) heavy insects at low angle of attack, as would be encountered during takeoff roll, and
(2) light insects at high angle of attack, as encountered during climbout and approach. Results of this
experiment are shown in figure 6.2-2 for all three species at the critical angles. These results are
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Figure 6.2-2. Test Results on the Effectiveness of the Krueger Flap as Insect Shield
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Figure 6.2-3.  Comparison of Theoretical Trajectory Predictions of Fruit Flies
Versus Test Results at 0 and -4 deg Angle of Attack

consistent with predictions based on particle trajectories computed using-a two-dimensional
multielement airfoil code (ref. 25) with an empirical model for lift and drag of insects derived by
Bragg and Maresh (ref. 26) as shown in figure 6.2-3.

6.3 DESIGN INTEGRATION

A variable-camber Krueger flap similar to the one used on the Boeing 747 would have been needed
to match the optimum geometry determined in the two-dimensional test discussed above, but it also
would have added cost and complexity without contributing to the principal objectives of the
program. It was found that the design goals could be met by changing the shape of the wing lower
surface and incorporating a folding “bull-nose” leading edge as described in section 3.3. Figure 6.3-1
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compares the desired aerodynamic contours and the final design. Some compromises were allowed
in the hardware design to meet volume and kinematic constraints. For example, four small notches
were cut in the bull-nose to provide clearance from the supporting ribs with the Krueger flap stowed.
These are described in more detail in volume III of this report.

6.4 LOW-SPEED WIND TUNNEL TEST

A three-dimensional low-speed wind tunnel test was performed on a 0.055 scale model of the 757
in the 8- by 12-ft wind tunnel of the University of Washington Aeronautical Laboratory (UWAL),
with the HLFC Krueger and modified leading edge installed. The purpose was to identify
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Figure 6.3-1. Comparison of the Requested and Produced Krueger Geometries
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incremental low-speed performance and stability and control changes attributable to the HLFC
modifications. The model was tested both in free air and in ground effect, as shown in figure 6.4-1.
Testing was conducted at a dynamic pressure of 60 Ib/ft2, which corresponds to a Reynolds number
of 1.3 million, based on mean aerodynamic chord.

The test included several trailing edge flap positions used during takeoff and landing. In addition to
the basic Krueger configuration, notches in the leading-edge bull-nose (fig. 6.4-2) were also
evaluated. A feature that caused some concern was the discontinuity between the Krueger and the
slat at the outboard end of the HLFC test span, as shown in figure 6.4-3. This discontinuity was
unavoidable because of the geometric differences between the two systems. Flow visualization
photographs revealed that there was a large area of separated flow downstream of the leading edge
discontinuity at high angles of attack. A large rolling moment resulted from the unsymmetrical stall,
as shown in figure 6.4-4. A Krueger end-seal was installed between the Krueger and the slat (see
fig. 6.4-2) was found to reduce the maximum unsymmetrical moment by more than 50% up to 24 deg
angle of attack. Figure 6.4-5 shows the observed flow patterns for the baseline wing and for the
modified wing with and without the Krueger end-seal at 18 deg angle of attack (just beyond stall).

The test showed that the lift capability of the modified wing was only slightly impaired, resulting in
a CpLp ., decrement of 0.05, corresponding to about a 1.3-kn increase in stall speed. The Krueger
end-seal at the end of the Krueger made the stall less abrupt, butdid notincrease Cp ,,. Figure 6.4-6
shows the lift curves with the Krueger flaps installed, with and without the Krueger end-seal, in
comparison to the baseline configuration with the slats in both the takeoff and the landing positions.

The drag of the modified configuration did not change much relative to the baseline when the slats
were in the landing position. In the takeoff position, the slats showed somewhat lower drag. Thus,
the Krueger, in landing configuration required to prevent insect accretion, would have a drag penalty
during initial climb. The measured drag characteristics are shown in figure 6.4-7 for the case of
20 deg trailing edge flap deflection.

The pitching moment data did not indicate changes in the longitudinal characteristics great enough
to require different handling or trimming of the airplane. Furthermore, the notches in the Krueger
leading edge had no significant effects on airplane performance and stability characteristics.
However, the rolling moment due to unsymmetrical stall was still a matter of great concern. While
the problem could have been significantly alleviated by the Krueger end-seal, it was decided not to
use it because of the complexity and cost. Instead, safety was ensured by prohibiting intentional stalls
and by adjusting the stall waming stick shaker.
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7.0 CONCLUDING REMARKS

7.1 LESSONS LEARNED

The remarks below summarize salient points and lessons learned from the design study reported here,
which provided the geometry and suction requirements for a 20-ft long hybrid laminar flow control
test panel for a Boeing 757 wing.

a.

The design was based entirely on analysis, except for a wind tunnel test to validate the flaps-
down characteristics of the modified airplane. Design of the HLFC leading edge contours was
accomplished using a three-dimensional, transonic viscous-flow computer code system. The
estimates of suction requirements and achievable extent of laminar flow were made on the basis
of boundary layer stability analysis using the USS computer code and an empirically
determined transition criterion.

The requirements of HLFC added a dimension to the wing aerodynamic design problem,
because restricting suction to the area forward of the front spar puts new constraints on tailoring
the profile for compressibility drag and lift coefficient.

The original contours of the outboard wing provided pressure distributions that would be
acceptable for HLFC. However, a slight modification of the leading edge geometry ahead of
the front spar further enhanced the flow characteristics, resulting in reduced crossflow
instability and therefore 4 reduced suction requirement. Repeated smoothing of the computer-
generated contours was necessary in both chordwise and spanwise directions to arrive at a
surface definition that met the stringent waviness criteria for laminar flow.

Desirable pressure distributions for HLFC in the vicinity of the engine nacelle could not be
provided within the design constraints. Nacelle interference effects caused an extended
pressure gradient there, which increased crossflow instability.

Investigation of off-design flight conditions showed the most favorable pressure distributions
forextensive laminar flow in cruise occur at somewhat higher values of both Mach number and
lift coefficient than the design point (Mach 0.80 at CL, = 0.50). In both climb and descent a
pronounced pressure peak near the leading edge would likely preclude achievement of
extensive laminar flow.

Accurate pressure predictions are very important to the design of a laminar-flow wing because
boundary layer stability, and hence suction requirements, critically depend on them. Flighttest
results obtained later in the program (to be reported in volume I) revealed certain characteristc
differences from the CFD predictions, such as shock locations farther aft and more pronounced
pressure peaks.

The transition prediction method used in this study was based on an empirical criterionderived
from data showing significant scatter. Computed transition locations and suction requirements
are therefore uncertain. After the analytical work described in this report had been completed,
a revised transition criterion was proposed with the inclusion of the latest data obtained with
the F-14 VSTFE airplane. The revised criterion indicated less sensitivity to crossflow
amplification than the one used in the present study, and it would have reduced the predicted
suction requirement.
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The best suction distributions obtained in the study had a high-suction region extending from
the leading edge to the end of the steep initial pressure gradient, followed by a longer low-
suction zone. A gradual transition between the high- and low-suction regions was found to be
advantageous. The required suction flow coefficient (Cq) at the design condition is

4.72 x1073, requiring a mass flow rate for the HLFC test panel of 8.2 Ib/min.

The stability analyses indicated that laminar flow could be sustained atleast back to the pressure
recovery line (or shock location), at about 45% chord over the outboard half of the HLFC test
panel. Inboard, because of nacelle interference effects, the pressure recovery and transition
front would be farther forward, at about 35% chord.

The HLFC test panel leading edge was calculated to be marginal with respect to attachment-
line turbulence contamination. A leading edge suction patch was therefore provided just
inboard of the panel, vented to a low-pressure point on the lower surface to provide suction
independently of the main suction system.

A low-speed wind tunnel test of a 757 model with the modified leading edge devices showed
that the maximum lift capability would be slightly compromised by replacing two slats by the
dual-purpose Krueger flap, but that the modification would not significantly alter the low-
speed performance of the test airplane.

7.2 RECOMMENDATIONS

Further studies are recommended in the following areas:

a.

Pressure Prediction Methods. CFD codes should be correlated with flight test pressure
survey results, as well as with wind tunnel data, and means should be sought to improve the
accuracy of shock location and pressure peak prediction.

Wing/Nacelle Integration. Nacelle, strut, and wing contours that minimize spanwise pressure
gradients and provide straight isobars are needed in order to maximize the extent of laminar
flow and simplify HLLFC suction system design.

Transition Prediction Methods. Further analysis and correlation efforts are needed to reduce
the uncertainty of the predicted transition point.

Leading Edge High-Lift/Insect Protection Devices. The drag penalty resulting from the gap
between the Krueger flap and the fixed leading edge at the takeoff flap setting should be reduced
or eliminated.
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Appendix A

Geometry Comparisons Between the HLFC and the 757 Wings

This appendix presents comparisons of airfoil contours between the basic Boeing 757 wing and the
modified HLFC test section at 10 spanwise stations from WBL 270 to WBL 513.

The x coordinates are body station values, and the z coordinates are measured vertically from the wing
definition plane. The units are inches for both.

The dashed lines are the original 757 profiles, while the solid lines show the HLFC contours.
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Appendix B

Normal Cuts of HLFC Airfoil Sections

The nose radius of a profile taken in a plane normal to the wing leading edge is the dominant parameter
determining the velocity gradient normal to the attachment line, which is required for evaluation of the

attachment line boundary layer momentum thickness.

This appendix shows normal cuts of the HLFC leading edge at three locations on the HLFC test panel.
They are at outboard slat stations (OSS) 322, 441, and 562, as indicated in figure B-1.
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Figure B-1. Locations of Normal Cuts
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Appendix C

Leading Edge Radius

This appendix presents a comparison between the leading edge radii of the basic 757 wing and the
modified HLFC wing over the span of the test panel.
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Figure C-1. Leading Edge Radius Comparison
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Appendix D
Pressure Distributions at the Design Condition

This appendix shows calculated pressure coefficient distributions at the design condition (Mach 0.80 at C[,

= 0.50) at 10 spanwise stations on the HLFC test panel, from WBL 270 to WBL 513. Each figure shows
Cps for the entire section plus an expanded-scale plot covering the forward 28% of the chord.
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Figure D-1. Calculated Cp Distribution at C; = 0.50, Mach = 0.80, WBL 270
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Figure D-2. Calculated o] P Distribution at CL = 0.50, Mach = 0.80, WBL 290
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Figure D-3. Caiculated Cp Distribution at C; = 0.50, Mach = 0.80, WBL 311
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Figure D-4. Caiculated Cp Distribution at C; = 0.50, Mach = 0.80, WBL 334
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Figure D-7. Calculated Cp Distribution at CL =0.50, Mach = 0.80, WBL 416
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Figure D-8. Calculated Cp Distribution at C, =050, Mach = 0. 80, WBL 447
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Figure D-9. Calculated Cp Distribution at CL = 0.50, Mach = 0.80, WBL 479
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Figure D-10. Calculated Cp Distribution at C; = 0.50, Mach = 0.80, WBL 513
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Appendix E

Isobar Plots for the HLFC Test Panel

- This appendix presents computer-generated isobar plots for the HLFC test panel at the design condition,
Mach 0.80 at Cp_, = 0.50.

Figures E-1 and E-2 show upper and lower surface isobars on the right wing planform on the airplane,
although the left wing was actually modified. Figure E-3 shows isobars projected on the developed wing
upper surface near the leading edge. Figure E-4 shows the same data in enlarged format, this time plotted
for the left wing, over a narrow portion near the attachment line.
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Appendix F

Boundary Layer Growth on the HLFC Test Surface

This appendix presents the calculated growth of the laminar boundary layer at three sections within the
HLEFC test panel: WBL 290, WBL 387, and WBL 479. These data pertain to the nominal design
condition, M = 0.80, CL, = 0.50 at 39,000-ft altitude. Figure F-1 shows the boundary layer velocity

thickness, 8, that is, the distance from the surface to the point where the velocity is 99% of the potential-
flow value. Figure F-2 shows the displacement thickness, 8*. Both are plotted against arc length on the
airfoil surface divided by local wing chord.
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Appendix G

Detailed Results of Boundary Layer Stability Calculations

This appendix contains computer-generated plots summarizing the stability calculations at six spanwise
stations, WBL 270, 311, 360, 416, 447, and 513, at the nominal design condition of Mach 0.80, at C =

0.50 and 39000-ft altitude.
For each station, the following are plotted against s/c:

a. Static pressure over the first 20% of the wing upper surface arc length, s/c, and the suction
distribution applied.

b. Crossflow disturbance amplification factors, NCF, for a range of wave numbers, 0CF, at zero
frequency.

c. Tollmien-Schlichting disturbance amplification factors, NTS, for a range of frequencies, (0TS), at
50-deg wave angle.

In addition, there are—
d. Contour plots of CF amplification factors, NCF = f(CF, s/c).
e. Contour plots of TS amplification factors, NTS = f(@TS, s/c)-

f. Comparison of CF and TS amplification factors with the transition criterion.
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Figure G-1. External Pressure and Suction Distributions, WBL 290
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Figure G-16. Contour Plot of C-F Disturbance Ampilification Factors, WBL 360
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Figure G-17. Contour Plot of T-S Disturbance Amplification Factors, WBL 360
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Figure G-19. Extemnal Pressure and Suction Distributions, WBL 416
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Figure G-20. Crossflow Disturbance Amplification Factors, WBL 416
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Figure G-25. External Pressure and Suction Distributions, WBL 447
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Figure G-26. Crossflow Disturbance Amplification Factors, WBL 447
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Figure G-28. Control Plot of C-F Disturbance Amplification Factors, WBL 447
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0.08

152

soC

0.12

0.16

0.2

N30668-062M



NCF

XoC
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